

The Future of Veterinary Medicine Is in Unlocking the Potential of mRNA Vaccines

Messenger RNA (mRNA) vaccines have reshaped the global biomedical landscape in recent years, demonstrating remarkable speed and flexibility in combating emerging infectious threats. While the first breakthroughs emerged in human health, veterinary medicine is rapidly becoming the next frontier where this technology could transform disease prevention, animal welfare and food security. The adoption of mRNA-based platforms for veterinary applications has the potential to redefine how vaccines are developed, manufactured and delivered.

Why Veterinary Medicine is Poised for Transformation

Veterinary medicine faces unique challenges. Animals live in diverse environments, often in large herds or flocks where disease outbreaks spread quickly. Traditional vaccines, though effective, can take years to develop and may not always adapt to the fast-evolving nature of pathogens. The mRNA vaccines offer a fundamentally different paradigm: they can be designed rapidly once the genetic sequence of a pathogen is known and their production can be standardised across multiple diseases using the same manufacturing platform.

This platform-based approach holds special value in veterinary contexts. Unlike conventional vaccines that may require complex cell cultures or egg-based production, mRNA vaccines are largely synthetic and scalable. This means they can be quickly customised for different species, from poultry and swine to cattle and companion animals, with fewer changes in the production process. For veterinarians and farmers, this flexibility could shorten response times during outbreaks, reduce losses and improve the sustainability of animal agriculture.

The Science Behind the Promise

At its core, mRNA technology works by delivering genetic instructions to the host cells, which then produce proteins that mimic parts of the target pathogen. These proteins stimulate the immune system to recognise and neutralise the real pathogen in the future. Unlike traditional vaccines that use inactivated or attenuated viruses, mRNA vaccines carry no infectious material, reducing risks associated with handling live pathogens during production.

Moreover, the modularity of mRNA allows researchers to target a wide range of diseases, including those for which no effective vaccine currently exists. In livestock farming, where respiratory and gastrointestinal infections account for significant economic losses, the ability to rapidly prototype vaccines could be a game-changer. Companion animals could also benefit from tailored vaccines against chronic or emerging conditions, enhancing their quality of life.

Addressing Barriers to Adoption

While the promise is clear, the path to widespread veterinary use of mRNA vaccines is not without hurdles. Regulatory pathways for animal vaccines differ from those for human medicines and frameworks are still evolving to accommodate novel platforms like mRNA. Additionally,

storage and distribution requirements – particularly cold chain logistics – can pose challenges in rural and resource-constrained settings.

Cost is another consideration. Veterinary vaccines must be affordable at scale, especially in food animal production where margins are tight. The challenge will be balancing the technological sophistication of mRNA with the need for practical, cost-effective solutions that farmers can adopt broadly. As manufacturing efficiencies improve and demand grows, these barriers are expected to gradually diminish.

Opportunities Beyond Disease Prevention


The implications of mRNA vaccines in veterinary medicine extend beyond routine disease prevention. For instance, they could play a role in reducing the overuse of antibiotics in animal farming by providing more targeted preventive measures. This in turn, supports global efforts to combat antimicrobial resistance.

mRNA technology also opens possibilities for addressing zoonotic diseases – infections that can transfer between animals and humans. By strengthening the immune defences of animal populations, mRNA vaccines can serve as a first line of protection against diseases with pandemic potential. This aligns with the broader 'One Health,' framework, which emphasises the interconnectedness of human, animal and environmental health.

The Road Ahead for CRDMOs

As the veterinary field embraces the potential of mRNA, Contract Research, Development and Manufacturing Organisations (CRDMOs) are emerging as central players in this transition. Currently, most clients provide the plasmid – the DNA blueprint required to produce mRNA – and CRDMOs take responsibility for manufacturing the vaccine material at scale. This model allows veterinary companies to move quickly without having to build expensive in-house infrastructure.

Looking ahead, CRDMOs are expected to expand their role beyond execution. They will not only manufacture but

also support upstream activities such as plasmid design optimisation, mRNA synthesis innovation and development of delivery systems tailored for different animal species. By partnering closely with clients throughout the value chain, CRDMOs will act as true innovation accelerators, bridging the gap between scientific breakthroughs and practical, field-ready veterinary vaccines.

Conclusion

The rise of mRNA vaccines marks a turning point in veterinary medicine. This technology offers unprecedented flexibility, speed and scope in addressing animal health challenges, from routine prevention to pandemic preparedness. While regulatory, logistical and economic barriers remain, the trajectory is clear: mRNA vaccines are poised to reshape how we protect animal populations and, by extension, human health and food security.

CRDMOs will be pivotal in this journey. By leveraging their expertise in biologics manufacturing and their ability to adapt to emerging technologies, they are set to become the backbone of veterinary vaccine innovation. As the field evolves, the collaboration between innovators and CRDMOs

will determine how quickly and effectively mRNA's promise can be realised in veterinary practice – transforming not only animal health but the global health ecosystem at large.

Alex Del Priore

Alex Del Priore, Head of Large Molecules CDMO and (Interim) Head of Small Molecules CDMO, has three decades of experience in developing, commercialising and life-cycle management of products in various life

science industries. Holding positions in both the US and Europe, his experience includes senior roles with global P&L responsibility as well as Animal Health. Alex was Vice President Operations and Health COO at Johnson Matthey in Greater London in his last assignment. In addition, he has been instrumental in M&A, strategy development and new product introduction.